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ABSTRACT

Part 1 of this study investigated evidence of biomass burning in global ice records, and here we continue to test the
hypothesis that an impact event at the Younger Dryas boundary (YDB) caused an anomalously intense episode of
biomass burning at ~12.8 ka on a multicontinental scale (North and South America, Europe, and Asia). Quantitative
analyses of charcoal and soot records from 152 lakes, marine cores, and terrestrial sequences reveal a major peak in
biomass burning at the Younger Dryas (YD) onset that appears to be the highest during the latest Quaternary. For the
Cretaceous-Tertiary boundary (K-Pg) impact event, concentrations of soot were previously utilized to estimate the
global amount of biomass burned, and similar measurements suggest that wildfires at the YD onset rapidly consumed
~10 million km? of Earth’s surface, or ~9% of Earth’s biomass, considerably more than for the K-Pg impact. Bayesian
analyses and age regressions demonstrate that ages for YDB peaks in charcoal and soot across four continents are
synchronous with the ages of an abundance peak in platinum in the Greenland Ice Sheet Project 2 (GISP2) ice core and
of the YDB impact event (12,835-12,735 cal BP). Thus, existing evidence indicates that the YDB impact event caused
an anomalously large episode of biomass burning, resulting in extensive atmospheric soot/dust loading that triggered
an “impact winter.” This, in turn, triggered abrupt YD cooling and other climate changes, reinforced by climatic
feedback mechanisms, including Arctic sea ice expansion, rerouting of North American continental runoff, and sub-
sequent ocean circulation changes.

Online enhancements: appendix.

Introduction

In part 1 of this study (Wolbach et al. 2018, this is- 23 YD boundary (YDB) alluvial/colluvial sequences
sue), we investigated evidence of biomass burning  across four continents. The main purpose of both

at the Younger Dryas (YD) onset in six ice-core rec-  parts of this investigation is to examine the extent
ords on three continents. Here in part 2, we simi-  and magnitude of biomass burning at the YD onset
larly compile and analyze data sets of biomass-  and to determine its potential relationship to the

burning proxies from 129 lake/marine records and ~ YDB impact event. In addition, we explore whether
these events initiated an “impact winter” that in-
cluded YD climate change.

Manuscript received February 2, 2017; accepted Septem- Firestone et al. (2007) posited that collisions be-
ber 14, 2017; electronically published February 1, 2018. . .

« The authors’ affiliations can be found at the end of the  tween Earth and extraterrestrial objects occurred at
article. the onset of the YD climate episode ~12,800 y ago,
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ground impacts. The YDB layer at more than 40 sites
across North America, South America, Europe, and
western Asia contains peak concentrations of one
or more exotic YD-age impact-related proxies, in-
cluding high-temperature iron-rich spherules, glassy
silica-rich spherules, meltglass, platinum (Pt), irid-
ium (Ir), and osmium (Os). Evidence for YDB biomass
burning includes abundance peaks in carbon spher-
ules, glass-like carbon, and nanodiamonds, with the
focus of this study on charcoal and soot (aciniform
carbon, denoted “AC/soot”; fig. 1). For images and
detailed descriptions of proxies of biomass burning
(wildfires), see figs. A1-AG; tables A1, A2; “Biomass-
Burning Proxies Found at YDB Sites” in the appendix
(the appendix, including figs. A1-A11 and tables A1-
A13, is available online). Many publications that deal
with the YDB impact event are provided in table A3.

To better understand potential YDB biomass burn-
ing, it is useful to investigate biomass burning caused
by previously studied cosmic-impact events. One of
those, the Tunguska airburst in 1908 over Siberia,
created impact-related magnetic spherules, meltglass,
nanodiamonds, and iridium, as discussed in Floren-
skiy (1965), Kirova and Zaslavskaya (1966), Firestone
et al. (2007), Bunch et al. (2012), and Kinzie et al.
(2014). This airburst produced a high-pressure blast
wave energetic enough to topple 80 million trees
across ~2000 km? (Florenskiy 1965; Svetsov 2008).

The thermal pulse scorched trees near the epicenter,
before transient high temperatures rapidly subsided
from >10,000°C at the center of the fireball. Nu-
merous sampling sites at Tunguska indicate that
temperatures and the severity of biomass burning
decreased outward with distance from ground zero,
initially igniting ~200 km? and subsequently spread-
ing to consume ~500 km? of forest (Svetsov 2008).
Because the impact-ignited fires were of low inten-
sity, the burn layer contained charcoal amounts
similar to those associated with normal, nonimpact
ground fires (Svetsov 2008).

The most detailed study of impact-related biomass
burning (Ebihara and Miura 1996) is of the 66-My-old
Cretaceous-Tertiary boundary (K-Pg) event, which
produced a discrete layer with peak abundances of
numerous impact-related proxies, including extra-
terrestrial iridium and platinum (Arakawa et al.
2003). Although there is some debate about the mag-
nitude of K-Pg biomass burning (Belcher et al. 2003;
Robertson et al. 2013), the evidence includes con-
centration peaks in AC/soot (Wolbach 1990}, char-
coal (Robertson et al. 2013), carbon spherules (Adatte
et al. 2005), annealed organic matter in framboidal
pyrite (Mahaney 2002), and aerosol- and gas-phase
polycyclic aromatic hydrocarbons (PAHs; Arinobu
et al. 1999). The K-Pg impact event triggered wild-
fires that ranged widely in intensity from low-grade
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Figure 1.

Sites with Younger Dryas boundary (YDB) biomass-burning proxies. Circles represent 23 sites with wildfire

proxies in the YDB layer, including charcoal and aciniform carbon/soot. See figure A7, available online, for locations
of sites with YDB Pt peaks and figure A8, available online, for locations of lake and marine cores discussed in this

investigation.
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smoldering fires farther from ground zero, similar to
natural wildfires, to high-intensity flaming combus-
tion near ground zero that produced much less
charcoal and more micron-sized carbon-rich aerosols
and AC/soot (Wolbach 1990). The K-Pg AC/soot has
been found globally at more than a dozen sites, and
those concentrations were used to estimate the per-
centage of biomass burned as a result of the K-Pg
impact event (Wolbach 1990; Wolbach et al. 1990,
2003). Atmospheric loading of AC/soot and other
impact-related aerosols would have blocked nearly
all sunlight from reaching Earth’s surface, triggering
extreme impact-related climate change by causing
what is commonly referred to as an impact winter
(Kaiho et al. 2016).

Increases in biomass burning related to YD climate
change have been reported in eight independent
studies that documented peak abundances of char-
coal in lake cores and terrestrial sites (“Biomass-
Burning Proxies Found at YDB Sites” in the appen-
dix), and AC/soot at two sites in North America
(Firestone et al. 2007). In addition, Maiorana-
Boutilier et al. (2016) investigated organic-rich sedi-
mentary layers called “black mats” at 19 sites in
North America, Central America, Europe, and the
Middle East and found peak abundances of black
carbon/soot (BC/soot) and other biomass-burning
proxies in the YDB layers. The full distribution of
YDB AC/soot is unknown because few analyses have
been conducted at sites on continents other than
North America.

We investigated 152 terrestrial sites, marine
cores, and lake cores on four continents to test the
hypothesis that the anomalous peaks in YD bio-
mass burning are coeval with the YDB impact
event. The YDB layer offers an unprecedented op-
portunity to explore biomass burning associated
with a major impact event that is young, well pre-
served, and relevant to human civilization.

Methods

Charcoal Record Selection. We compiled large
data sets of biomass-burning proxies (e.g., charcoal
and AC/soot) from 125 lake cores and 4 marine cores
encompassing a wide range of environments: terres-
trial, lacustrine, and marine. More than 8700 sam-
ples with depth and age values were available from
across North, South, and Central America, Europe,
and western Asia, the continents with known YDB
impact evidence (figs. 1, A7, A8). For North America,
6046 samples were available, for Europe 676, for
South America 1446, and for Asia 592; four were
marine drilling sites. All of these sites were chosen
because they are adequately dated, with calibrated
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ages >10,000 cal BP and <15,000 cal BP, and also
contain at least one sample dating between 13,400
and 12,300 cal BP. Most records are from the Global
Charcoal Database (Power et al. 2008; GCD 2013).
Sources and selection criteria for the data used in this
study are given in “Sources of Data” and “Charcoal
Record Selection” in the appendix.

Terrestrial Sites. Records from 23 YDB sites were
chosen because they contained 453 adequately dated
data points that span the YDB layer and include
samples containing one or more biomass-burning
proxies. These sites represent a wide range of geo-
logical settings, including coastal canyons, stream-
beds, caves, lakes, glacial moraines, and dune fields.
Again, we limited data points to those with cali-
brated ages >10,000 cal BP and <15,000 cal BP that
also contained at least one sample dating between
13,400 and 12,300 cal BP. Other YDB sites that con-
tained impact-related proxies were not included be-
cause they are not adequately dated and/or have not
yet been investigated for biomass-burning proxies
(table A1).

AC/Soot. Fifteen sites were chosen for AC/soot
testing where the YDB layer had been previously
identified and dated. A standard protocol was used
to extract AC/soot from bulk sediment (Wolbach
et al. 1985, 1990; Wolbach and Anders 1989; Wol-
bach 1990; Kinzie et al. 2014). The process consists
of multiple steps: (1) demineralization through mul-
tiple treatments of hydrofluoric acid (HF) and hy-
drochloricacid (HCI), (2) oxidation to separate organic
material from elemental carbon by using sodium di-
chromate, (3) SEM analysis to differentiate between
AC/soot and nonsoot carbon, and (4) examination
of micrographs to quantify ratios of soot to nonsoot
particle areas. For more details on quantifying AC/
soot amounts, see “Extraction of AC/Soot from Sed-
iments” in the appendix.

Platinum Measurements. Some Pt results are from
previous studies. Eight new sites were chosen for
this study where the YDB layer had been identified
and dated and was known to contain impact-related
proxies as well as biomass-burning proxies. Pt anal-
yses were performed by Activation Laboratories, us-
ing fire assay and inductively coupled plasma mass
spectrometry (ICP-MS; “Platinum Measurements”
in the appendix) with standards and blanks to as-
sure accuracy and replicability. Measurements are
reported in parts per billion (ppb) dry weight, with a
detection limit of 0.1 ppb.

Age-Depth Models. To create new age-depth
models, we used Bayesian statistical analyses, which
are able to calculate millions of possible age models
(iterations) and determine the average (weighted
mean; Bronk Ramsey 1998, 2009; Parnell et al. 2008;
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Kennett et al. 2015). Because of this and other ad-
vantages, Bayesian age-depth modeling is considered
more robust and flexible than non-Bayesian models
(Parnell et al. 2008; Bronk Ramsey 2009), leading to
the increased use of Bayesian analytical programs in
multiple disciplines, for example, BChron (Parnell
et al. 2008), BCal (Buck et al. 1999), OxCal (Bronk
Ramsey 2009), and Bacon (Blaauw and Christen
2011). For this study, we used both BChron (ver. 3.2)
and OxCal (ver. 4.2.4). We present all output by age at
the 95% confidence interval (CI). For details, see
“Age-Depth Models” in the appendix; an example of
the OxCal code used is in “Example of Bayesian Age-
Depth Code Used in OxCal” in the appendix.

Regression-Lowess Method. Once age-depths were
calculated, we followed the regression-lowess pro-
tocol described by Power et al. (2008) and Marlon
et al. (2009) as follows. Charcoal influx values were
stabilized via the Box-Cox transformation and then
converted to “Z-scores,” which were calculated by
subtracting the mean value and dividing by the
standard deviation. Finally, Z-score values were
smoothed with a lowess algorithm, typically with
~200-y half-windows. For details, see “Regression-
Lowess Method” in the appendix

Bayesian Errors-in-Variables (EIV)-Spline Method.
Radiocarbon dates were calibrated with IntCall3
within the OxCal program (ver. 4.2.4; Bronk Ram-
sey 1998, 2009) to produce Bayesian age-depth
models. Charcoal influx values were then converted
to Z-scores, as described in the regression-lowess
method. A Bayesian EIV algorithm, developed by
Cahill et al. (2015), was used to plot the Z-scores.
The algorithm was designed to run within the Bayes-
ian program BChron (Haslett and Parnell 2008; Par-
nell et al. 2008), and within the open-source statis-
tical software program R. For details, see “Bayesian
EIV-Spline Method” in the appendix. The BChron and
EIV programming code used here can be obtained
from coauthor A. C. Parnell at https://maths.ucd.ie
[~parnell_a/.

Results

Utilizing YDB Platinum (Pt) as a Datum. Petaev et al.
(2013b) examined samples from the Greenland Ice
Sheet Project 2 (GISP2) ice core and identified a large
Pt spike, which they attributed to an extraterrestrial-
impact event at the YD onset. These workers inferred
“multiple injections of Pt-rich dust into the strato-
sphere that are expected to result in a global Pt
anomaly” (p. 12,917). Their results indicate that ex-
traterrestrial Pt settled out of the atmosphere into a
21-y interval of ice, rising 100 times above back-
ground at 12,822 + 140 cal BP, within the range

12,836-12,815 cal BP. Including this discovery,
there have been multiple independent reports of
Pt abundance peaks in the YDB layer at 22 sites in
North America, Europe, and Asia: one site in Green-
land (Petaev et al. 2013b), one site in Russia (Andro-
nikov et al. 2014), four sites in Lithuania (Andronikov
et al. 2015), one site on the French-Italian border
(Mahaney et al. 2016b), two sites in the Netherlands
(Andronikov et al. 2016b), one site in Belgium (An-
dronikov et al. 2016b), and 12 sites in the United
States (Andronikov and Andronikova 2016; Moore
et al. 2017).

Quantifying YDB Pt Concentrations. In this
study, peaks in YDB Pt abundances were identified at
8 out of 10 sites (fig. 2; table A6). For two sites, Pt has
not yet been measured, so instead, abundances are
shown for magnetic impact-related spherules. Six
sites show high, distinct YDB peaks in Pt abun-
dances, and two had smaller peaks. In all, 71 samples
were analyzed, and of those, 51 were identified as
having background values that averaged 0.2 ppm
(range: <0.1-0.5), and 20 were considered to be YDB
impact values, averaging 1.4 ppb, or 7 times the
background value (range: 0.5-8.1). Thus, YDB peaks
in Pt were observed at 28 sites, including those of this
study and previous studies. For previously published
studies of key YDB sites, see table Al.

Analyzing YDB Biomass-Burning Proxies at Terres-
trial Sites. Biomass burning produces a wide vari-
ety of carbon-rich proxies, including charcoal, soot,
carbon spherules, and glass-like carbon. Although
nanodiamonds have never been found associated
with nonimpact wildfires, they often are found in
YDB carbon spherules and glass-like carbon (Kinzie
et al. 2014), and therefore we consider them to be
an indirect proxy for impact-related wildfires.

One particularly important biomass-burning proxy
is AC/soot, a subset of the BC/soot group. Scan-
ning electron microscopy reveals that AC/soot has
a clearly distinguishable morphology resembling
bunches of grapes, the definition of “aciniform.”
Particles of AC/soot with diameters typically <1 pm
are readily distributed throughout the atmosphere
during wildfires, as exhibited by the 66-My-old K-Pg
impact that distributed them across multiple con-
tinents (Wolbach 1990).

Firestone et al. (2007) observed AC/soot abun-
dance peaks at two sites in Arizona and South
Carolina. Both occurred in the YDB and adjacent
layers, with no AC/soot above or below. Later,
Maiorana-Boutilier et al. (2016) measured BC/soot
at 19 YDB sites: nine in the United States, seven in
Mexico, and one each in Belgium, Syria, and Spain.
They examined 34 terrestrial YDB samples of dark,
organic-rich sedimentary layers, known as “black
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Figure 2. Younger Dryas boundary (YDB) biomass-burning proxies plotted against impact-related proxies from 10
selected terrestrial sites. Black solid lines represent either Pt (ppb) or magnetic spherules (“Mag Sph, #/kg”); dotted
gray lines represent aciniform carbon (AC/soot; ppm), black carbon (BC)/soot (ppm), or charcoal (Charc.; g/kg).
Bayesian-calculated ages on the right-hand side are from Kennett et al. (2015).

mats” (Haynes 2008). Measurements were made
on these samples for stable carbon isotopic ratios
(61*Cyo0e), abundances of BC/soot (a larger group
that includes AC/soot), and levoglucosan (a marker
for biomass combustion). All sites contained peak
concentrations of BC/soot in the YDB layer. Con-
centrations of levoglucosan from within the black-
mat layer in Ohio were ~125 times higher than
those in the layer below it, signaling a significant
peak in biomass burning. Even though the sampling
sites extended across two continents, 6'°C,,,. values
from the YDB black mats were similar across all
sites and yet different from the 6°C,., values mea-
sured above and below the YDB layer. These results
suggest that the fuel sources of YDB biomass burn-
ing were ex situ and mixed, supporting the hypoth-
esis of intense, widespread, coeval wildfires across
North America and Europe.

In this study of AC/soot, all selected sites included
a dated YDB layer with at least one proxy for bio-
mass burning. Analyses were performed on samples
from 16 terrestrial sites in five countries: 12 sites in
10 US states and one site each in Belgium, Can-
ada, Mexico, and Syria. The sites are located up to
~12,000 km apart, and their records contain an av-

erage of three impact-related wildfire proxies each
(range: 1-7). The settings of sites are highly vari-
able, including a coastal canyon (Arlington Canyon,
Santa Rosa Island, CA), a Carolina bay (Blackville,
SC), seasonal, arid-region streambeds (Blackwater
Draw, NM; Bull Creek, OK; Murray Springs, AZ),
caves (Hall’s Cave, TX; Sheriden Cave, OH), a fresh-
water lake (Lake Cuitzeo, Mexico), an end-glacial
Moraine (Melrose, PA), and a relict dune field (New-
tonville, NJ).

Quantifying YDB AC/Soot. Of the 15 terrestrial
sites, seven contain detectable YDB AC/soot. Two
sites previously investigated by Maiorana-Boutilier
etal. (2016) contained BC/soot, but in this study, only
one of those sites contains detectable AC/soot (fig. 1;
tables A4-A6). For nine of the 10 sites shown in fig-
ure 2, there were measurable YDB biomass-burning
peaks in either AC/soot or BC/soot. The tenth site
(Blackwater Draw, NM) contains no measurable AC/
soot, and so abundances are shown for charcoal. We
analyzed 78 sediment samples from the 15 sites and
determined an average value of 1234 ppm, with a
range from 100 to 6100 ppm (0.6 wt% of bulk sedi-
ment). On the basis of SEM imaging, the AC/soot
particles range in size from ~10 to 150 nm. The YDB
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AC/soot is indistinguishable from K-Pg AC/soot in
size and shape, and the size ranges of AC/soot for
both impact events have lognormal distributions
(Wolbach et al. 1985; Wolbach and Anders 1989).
Concentrations of AC/soot were found only in and/or
contiguous to the YDB layer, with none detectable in
51 sedimentary samples above and below the YDB.
Charcoal produced by nonimpact wildfires and an-
thropogenic campfires occurs above and below the
YDB at many of the 15 sites, and yet no AC/soot was
detected, consistent with the interpretation that AC/
soot from nonimpact wildfires is rarely preserved
(Wolbach et al. 1985; Wolbach and Anders 1989;
Wolbach 1990),

Quantifying Charcoal at Terrestrial YDB Sites.
Sedimentary charcoal was identified via optical
microscopy in 287 sediment samples. We detected
YDB peak charcoal concentrations at 31 sites,
ranging in diameter from ~125 pm to 6 cm and in
abundance at the YDB from a few dozen particles
to 27.9 g/kg, averaging 3.9 g/kg (fig. 2; table AG).
Background concentrations average 0.1 g/kg, with a
range of 0-1.5 g/kg. Peak abundances of charcoal in
the YDB layer always co-occur with one or more
peaks in AC/soot, carbon spherules, glass-like car-
bon, nanodiamonds, high-temperature meltglass,
impact-related microspherules, Ir, or Os.

Analyzing YDB Biomass-Burning Evidence in Lake
and Marine Cores. The YDB hypothesis predicts
that many, but not necessarily all, lake-core records
should contain evidence of significant peaks in
biomass burning at the YD onset, and there are
many examples of such peaks in the existing liter-
ature. (1) In the northeastern United States, Munoz
et al. (2010) examined 40 charcoal records and found
an above-background collective charcoal peak that
dates to the YD onset. (2) Similarly, in Europe, Kai-
ser et al. (2009) sampled across the YD-age Usselo
Horizon at 29 sites across 600 km of northern
Europe (Belgium, the Netherlands, Germany, and
Poland). At approximately half the sites, they found
“conspicuous amounts of . . . charcoal” (p. 601)near
or in the YDB layer, some of which they noted were
associated with possible impact proxies. (3) In Scot-
land, Edwards et al. (2000) conducted high-resolution
pollen and microscopic charcoal analyses in nu-
merous late Quaternary paleolake and wetland se-
quences. They documented an anomalous sharp rise
in charcoal content at or close to the onset of YD
cooling (locally called the “Loch Lomond Stadial”)
that rose to a distinct abundance peak during the
YD episode. The authors expressed difficulty in ex-
plaining the origin of the anomalous burning episode
because of low biomass availability in Scotland at
that time, suggesting that the charcoal may have had

a nonlocal source. (4) Power et al. (2008; their fig. 5)
conducted a low-resolution study of 355 charcoal
records from the Global Charcoal Database (GCD) for
North America, Europe, and Africa and found a peak
in YD-age charcoal in the 500-y bin 13,000-12,500 cal
BP. (5) Daniau et al. (2010) produced low-resolution
400-y bins of charcoal concentrations for 67 sites in
Africa, Asia, Australia, Europe, North America, and
South America (their fig. 4). They identified a major
collective charcoal peak during the YD climate epi-
sode, representing one of the highest charcoal abun-
dance peaks in the previous 25,000 y.

Quantitative charcoal records are commonly pro-
duced during paleoecological investigations of lake
sediment cores that have been radiocarbon dated,
and these data are readily available from interna-
tional data repositories. Mostly using the GCD (2013,
we compiled and analyzed charcoal records from
multiple lake cores on four continents. This investi-
gation was restricted to the interval between ~14,000
and 12,000 y ago, a span that includes the YDB im-
pact event at 12,835-12,735 cal BP (Kennett et al.
2015).

Central to this study is the requirement of uni-
formly calibrated radiocarbon dates for use in devel-
oping accurate age-depth models and for intercore
correlations. Related to this, we address several prob-
lems that are common to comparative studies of
lake-core charcoal records. First, it has long been
common practice to compile and compare lake rec-
ords in which **C dates had been calibrated with dif-
ferent radiocarbon calibration curves (e.g., IntCal93,
IntCal98, IntCal04, IntCal13, and Fairbanks 0805).
However, these curves are mutually incompatible,
potentially resulting in large differences between
them for an identical radiocarbon date. For example,
calibration of the *C date of 10,900 + 100 *C y BP
(12,819 = 94 cal BP; IntCal13) using these five dif-
ferent radiocarbon curves produces calibrated ages
that vary by up to 117 y (table A7). Such high vari-
ability for calibrations of the same radiocarbon date
seriously decreases the accuracy of intercore com-
parisons.

We also reexamined 35 dated lake-core records
investigated by Marlon et al. (2009) and calibrated
the single radiocarbon date nearest the YD onset,
using four different calibration curves (IntCal93,
IntCal98, IntCal04, and IntCal13). Our results show
a substantial age difference of more than 1000 y
(from +520 to —533 y; table A8). The average chro-
nological resolution (age uncertainty) with the lat-
est calibration curve, IntCall3, for the same 35
North American lake-charcoal records is +179 vy,
rather than +50Yy, as claimed by Marlon et al. (2009;
fig. A9; table A9). Therefore, dates for all records used
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Figure 3. Comparison of regression-lowess and Bayes-
ian EIV (errors-in-variables)-spline models for charcoal
concentrations in 65 North American lakes. The Y-axis
plots Z-scores of charcoal concentrations. Black lines
represent mean ages; dark gray curved bands represent
Z-scores at the 68 % confidence interval (CI) and light gray
bands that at the 95% CIL. The vertical dashed line repre-
sents the age of the Pt spike in the Greenland Ice Sheet
Project 2 (GISP2) core, and the vertical solid lines repre-
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in this study were recalibrated with a single current
calibration curve, IntCall3 (Reimer et al. 2013).

It has also been common practice to create age-
depth models by using regression algorithms that
produce single point dates (calibrated median or
mean ages) that lack age uncertainties. This incor-
rectly assumes that lake charcoal dating to, for ex-
ample, 12,800 cal BP is accurate to within =0y, an
unsupportable level of precision (see Kennett et al.
2015). Recognizing this limitation, curators of the
Neotoma Database for charcoal data recommended
that age-depth models provided to international
databases include calibrated age uncertainties.

The chronological resolution of the lake records
used in this study ranges from high to low quality.
The issue of low-resolution sampling was consid-
ered by Marlon et al. (2009), who found that in-
cluding some low-resolution records had little or no
effect on the results for the 35 lakes in their study
(see their fig. 1). Similarly, Kennett at al. (2015)
found little or no difference caused by mixing low-
resolution records with high-resolution ones (see
their figs. 9 and S22). For our study, low-resolution
sampling is mitigated by the use of Bayesian anal-
ysis, in which high-resolution dates are weighted
more to compensate for the low-resolution records.

In this study, we analyzed charcoal records from
125 lakes and four marine cores on four continents
(table A10), using one of two methods for compari-
son: (1) the regression-lowess method (without age
uncertainties) and (2) the Bayesian EIV method
(with age uncertainties), as described in “Methods.”

Analyzing Lake and Marine Charcoal Concen-
trations. North American Lake Records of Bio-
mass Burning. First, we used the same regression-
lowess method for the 35 lakes reported by Marlon
et al. (2009; their fig. 2) and produced identical re-
sults (fig. 3A). The resulting curve demonstrates a
sharp rise in charcoal at ~13,040 cal BP, near the YD
onset, that Marlon et al. (2009, p. 2522) reported to
be “the largest and most rapid change in biomass

sent the GISP2 timescale uncertainties of + 140 y (Green-
land Ice Core Chronology 2005 timescale [b2k]; Rasmussen
etal. 2008; Seierstad et al. 2014). Roughly horizontal dotted
lines represent sixth-order polynomial trend lines. The
vertical dashed line indicates Pt enrichment and Younger
Dryas (YD) cooling onset in the GISP2 ice core (Petaev et al.
2013b). A, Lowess-smoothed model of 35 lakes from the Global
Charcoal Database, as presented by Marlon et al. (2009). B,
Bayesian model using identical data from the same 35 lakes. C,
Bayesian age-depth model for 30 additional North American
lakes. D, Bayesian age-depth model for all 65 North American
lakes, with YD boundary peak at 12,905 + 350 cal BP.
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burning during deglaciation. Burning was wide-
spread but not continent wide.” There are oscilla-
tions around a general trend of gradually increasing
wildfire activity during the deglacial period from
~13,400 to 12,300 cal BP, and all peaks above the
trend lines in figure 3 are standard deviations rep-
resenting significant episodes of biomass burning.

Bayesian analysis of the same 35 lake-charcoal
profiles produced a curve that is generally similar
to the regression-lowess model (fig. 34), but with
important differences. There is a broad-based peak
dated to 12,905 + 485 cal BP that overlaps the
previously published YDB age of 12,835-12,735 cal
BP at 95% CI (Kennett et al. 2015). The Bayesian
analytical plot (fig. 3B) places the charcoal peak
~100 y younger than the regression-lowess plot
(fig. 3A), even though they use the same data set.
This difference most likely results from calibrating
the dates with a single calibration curve instead of
multiple ones and from using Bayesian instead of
regression analyses. Bayesian modeling is generally
considered more robust, because it provides sta-
tistical uncertainties for both Z-scores and ages,
rather than erroneously assuming that the statis-
tical accuracy is =0y.

We also analyzed 30 additional lake records in the
United States (18 states) and Canada (five provinces)
compiled from the GCD (2013) and independent
papers. The samples range in age from 13,400 to
12,300 cal BP, a span selected to include the YD
onset. The results show a pronounced YDB charcoal
peak at 12,900 + 280 cal BP (fig. 3C), similar to that
of the 35 lakes previously analyzed (fig. 3B).

We combined data for the 35 lakes from Marlon
et al. (2009) with the 30 additional records, for a total
of 65 lake records. The records contain 6046 dates, for
an average of 93 dated charcoal records per lake with
an average chronological sample resolution of ~40'y.
Charcoal plots for eight North American lakes se-
lected from the group are shown in figure AlO.
Charcoal and soot records are shown for one North
American lake in figure Al1. As calculated by the
EIV routine, there are several above-mean charcoal
peaks in the record, and one of the highest occurred at
12,905 + 350 cal BP (13,255-12,555 cal BP| at 95%
CI, overlapping the age of 12,835-12,735 cal BP for
the YDB event (Kennett et al. 2015).

Charcoal Z-score peaks across four continents
display an observable pattern (fig. 4), in which the
collective YD-age charcoal peak, labeled “3,” falls
within an approximately 100-y span for values on
all continents. The age of each peak 3 is shown at
the bottom right of each panel. The pattern of sev-
eral peaks for North America (fig. 4A) closely cor-
responds to that for Europe (fig. 4C), but other than

the peak at the YD onset, South/Central America
(fig. 4F) and Asia (fig. 4G) showed little similarity to
each other or to North America and Europe. Thus,
wildfire activity at the YD onset appears to be co-
eval on all continents, suggesting a panhemispheric
external forcing mechanism, such as the YDB im-
pact event and ensuing YD climate change. Wildfire
activity at other times is not coeval across con-
tinents, thus making synchronous biomass burning
unique to the YD onset.

European Lake Records of Biomass Burning. For
nine European countries, we analyzed charcoal rec-
ords from 19 lake cores. There are 676 samples with
interpolated dates, for an average of 36 dated charcoal
records per lake with an average chronological reso-
lution per sample of ~90 y. The EIV results (fig. 4C)
show an increase in wildfire activity near the YD
boundary, rising to a mean peak at 12,835 + 220 cal
BP (13,065-12,625 cal BP), overlapping the Bayesian-
calculated YDB age range of 12,835-12,735 cal BP
(Kennett et al. 2015). Regression-lowess results for
Europe show a similar trend (fig. 4D).

South and Central American Lake Records of
Biomass Burning. For nine countries, we analyzed
28 lake sediment records containing 1446 interpo-
lated ages, for an average of 52 dated charcoal rec-
ords per lake with an average sample span of ~85 y.
One of the highest peaks in the record occurs at the
YD onset, 12,850 + 235 cal BP (fig. 4E; 13,085—
12,545 cal BP). Regression-lowess results are simi-
lar (fig. 4F).

Asian Lake Records of Biomass Burning. In
seven countries across Asia, we investigated 17 sites
containing 592 dates, for an average of 35 dated
charcoal records per lake. The average sample span is
~120 y. There is a conspicuous peak in mean char-
coal abundances at 12,950 + 225 cal BP (13,175-
12,725 cal BP), followed by a sharp decline in biomass
burning and then a peak at 12,400 cal BP (fig. 4G).
Regression-lowess results are similar (fig. 4H).

Marine Records of Biomass Burning. We exam-
ined the Global Charcoal Database to identify marine
records that met the criteria of this study. This re-
vealed only four cores with charcoal and/or soot
abundances that were adequately dated at sufficient
resolution. Two cores, MD95-2042 near the coast of
Spain and 17940 from the South China Sea, show
multiple charcoal peaks, including ones at or close to
the YDB, but these peaks are unremarkable, perhaps
because of the low resolution of the cores. Each rec-
ord was statistically grouped and analyzed with the
terrestrial lake records of the nearest continent.

One well-dated, high-resolution late Pleistocene
core (Ocean Drilling Program Hole 893A) is from
the Santa Barbara Basin off the coast of California.
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Figure 4. Comparison of Bayesian EIV (errors-in-variables)-spline models for 129 charcoal records from five conti-
nents: Z-scores versus age. Solid black lines represent mean ages calculated by the EIV method; dark gray bands
represent Z-scores at the 68% confidence interval (CI) and light gray bands those at the 95% CI. Dashed vertical lines
indicate Greenland Ice Sheet Project 2 (GISP2) Pt peak median age, and solid vertical lines represent ice-core age
uncertainties of +140 y (Greenland Ice Core Chronology 2005 timescale). Roughly horizontal dotted lines represent
sixth-order polynomial trend lines; highest peaks are above mean. Peak values in each curve are labeled 1-5; not all
peaks appear in each plot. Ages shown in lower right-hand corners (A, C, E, G) are for values at peak 3 (across the
Younger Dryas [YD] onset); ages for all peak 3s fall within a span of ~100 y. A, Bayesian EIV-spline model for 65 North
American lakes, as in figure 3D. B, Regression-lowess model for same data. C, D, Bayesian EIV-spline (C) and
regression-lowess (D) models for 19 European lakes. E, F, Bayesian EIV-spline (E) and regression-lowess (F) models for
28 South/Central (S/C) American lakes. G, H, Bayesian EIV-spline (G) and regression-lowess (H) models for 17 Asian
lakes. Bayesian EIV-spline and regression-lowess models are similar to the lowess curves, except that the corre-
sponding charcoal peaks are somewhat older or younger and curve amplitudes differ.

This 24,000-y sequence exhibits the highest peak  with an above-average charcoal peak at ~12,750 cal
in biomass burning precisely at the YD onset, on  BP (Thevenon et al. 2004). The coincidence of
the basis of the charcoal-pollen ratio (Heusser and  these peaks at the YD onset with similar peaks on
Sirocko 1997). This anomalously high peak corre-  four continents suggests a connection to the YDB
lates with intense biomass burning documented  impact event, rather than to anthropogenic burn-
from the nearby Channel Islands (Kennett et al.  ing, as suggested by Thevenon et al. (2004).
2008). The peak also coincides with the extinction YDB Wildfire Magnitudes. The magnitude of a
of pygmy mammoths on the islands and with the  stratigraphic charcoal peak is not necessarily propor-
beginning of an apparent 600-800-y gap in the ar-  tional to wildfire intensity or the land area burned
chaeological record, suggesting a sudden collapse  (Marlon et al. 2009). Even so, previous studies show
in island human populations (Kennett et al. 2008).  that unusually high charcoal peaks in the historical
Another valuable marine core record of biomass  record have been linked to intense, large-scale fires
burning is from the western Pacific >500 km north ~ (Marlon et al. 2009; Clark and Patterson 1997; Clark
of Papua New Guinea (MD97-2140, water depth et al. 1998; Lynch et al. 2004). To assist in evaluating
2547 m; Thevenon et al. 2004). This core is un-  the relative magnitude of wildfire episodes at or near
usual in providing a record not only of charcoal but  the YD onset, we identified the age of the highest and
also of black carbon, which includes AC/soot. The  second-highest charcoal concentration peaks in each
record exhibits two high black-carbon peaks in the  of the same group of 129 charcoal lake/marine records
~368,000-y-long biomass-burning record, the first  dating to between 15,000 and 12,200 cal BP, a span of
at ~50,000 y ago and the second spanning the age 2800 y. This age interval was marked by two major
interval from 13,291 to 12,515 + 125 cal BP (fig. 5)  episodes of rapid climate change: the cold-to-warm
and overlapping the YD onset at ~12,800 cal BP. In  transition at the onset of the Belling (~14,400 cal BP)
addition, the YDB peak in black carbon coincides  and the warm-to-cold transition at the onset of the
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Figure 5. Black carbon/soot in a western Pacific Ocean core, Papua New Guinea. Two major peaks are shown. The
second-highest black carbon/soot peak spans the Younger Dryas boundary (YDB) interval, rising to ~4 times the back-
ground level. The Y-axis shows accumulation rate (Thevenon et al. 2004). Vertical dashed line represents the Younger

Dryas (YD) onset and the YDB Pt peak.

YD (~12,800 cal BP). Charcoal peaks were identified
according to the protocol described by Marlon et al.
(2009). We grouped these ages into 400-y bins, which,
at =200 vy, is similar to the average age uncertainty
(=179 y) for 35 North American lake-charcoal
records. Of the 129 lake records, 118 exhibited char-
coal peaks between 15,000 and 12,200 cal BP. The
remaining 11 lake records were discontinuously
sampled at low resolution, providing few data points.

For all continents investigated—North America,
Europe, Asia, and South America—the highest binned
peaks span the onset age of the YD climate episode
from 13,000 to 12,600 cal BP. The individual conti-
nents show similar results: 44%-30% of the highest
charcoal peaks for each continent fall within the
same bin that includes the YD onset and the GISP2 Pt
peak (fig. 6). This represents an anomalously large
cluster of wildfires, unequaled by fire activity for the
other intervals.

For the binned results on all four continents, ~33 %
of the highest peaks in the 118 records fall within the
bin centered at 12,800 + 200 cal BP (fig. 7A). For the
four continents, 66% of lakes (85 of 129) contain
one or more charcoal peaks from wildfires within
the range of 12,800 + 150 cal BP (fig. 7B), closely
matching the age of the Pt peak at 12,822 + 140 cal
BP. Another 17% of lake records (22 of 129) showed at
least one charcoal peak from a wildfire in the range
of 12,800 + 300 cal BP. The remaining 17% of lakes
(22 of 129) that exhibited no significant charcoal
peaks in that interval were discontinuously sampled
at low resolution, with only a few samples in the en-
tire 2800-y interval.

Bayesian Analysis of Synchroneity at the YD Onset.
The YDB hypothesis predicts synchroneity at the
YD onset among multiple proxies, including YDB
cosmic-impact proxies and biomass-burning proxies

in ice cores, terrestrial sites, lake cores, and marine
cores. Radiocarbon age uncertainties are too large to
permit conclusive proof of synchroneity at the YD
onset. Therefore, we used Bayesian analysis to de-
termine whether synchroneity is statistically possi-
ble, following Parnell et al. (2008) and Bronk Ramsey
(2009) in using OxCal’s Bayesian difference code. If
the Bayesian-calculated intervals at the 68% and
95% ClIs allow for a full overlap of all records (i.e.,
include 0y as a possibility; reported in OxCal as —1),
then the ages of all the YDB events could be statisti-
cally synchronous. On the other hand, if the CIs in-
clude only values that are greater than 0, synchrone-
ity is rejected.

Bayesian analysis shows that the mean age is
12,854 + 56 cal BP (12,910-12,798 cal BP), which
overlaps the Bayesian-calculated age of 12,835-
12,735 cal BP (fig. 8; table A11; Kennett et al. 2015).
OxCal also computed age intervals of —1 to 268 y at
the 68.2% CI, —1 to 655y at the 95.4% CI, and —1 to
1291 y at the 99.7% CI. All three CIs contain O,
meaning that they could overlap in age, and there
are no grounds to reject synchroneity, thus sup-
porting YDB impact theory.

Discussion

Evidence from widely separated ice records in part 1
(Wolbach et al. 2018) and sediment records here in
part 2 demonstrates that a major, widespread peak
in biomass burning occurred on at least four con-
tinents at the warm-to-cold transition marking the
YD onset (fig. 94, 9B). This peak is synchronous
with the YDB cosmic-impact layer, as recorded by
multiple impact-related proxies, including peak
abundances of Pt, high-temperature microspherules,
and meltglass.
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Figure 6. Fire frequency on four continents: seven 400-y
bins across a 2800-y interval (15,000-12,200 cal BP) that
includes the Younger Dryas onset. Bars represent the sum
of the numbers of highest and second-highest peaks for
118 lake records combined into 400-y bins. Younger Dryas
boundary bin range = 44%-30%. S/C America = South/
Central America.
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Figure 7. Fire frequency totals. A, Bars represent the
sum of the numbers of highest and second-highest peaks
for 118 lakes compiled in seven 400-y bins spanning 15—
12.2 ka. The bin centered on 12,800 cal BP contains 33 %
of the total peaks, ~4 times the average of all other peaks.
B, Cumulative total of individual biomass-burning peaks:
66% of lakes (85 of 129) exhibit at least one major charcoal
peak in the interval of 12,800 + 150 cal BP, and 83% (107
of 129) have at least one charcoal peak in the interval of
12,800 + 300 cal BP.

Biomass Burning and the Pollen Record. Widespread
biomass burning can be expected to have a dramatic
effect on vegetation and hence to be recorded in the
pollen record. Peros et al.’s (2008) comprehensive
analysis of North American pollen records indeed
demonstrated that an abrupt, temporary decline in
conifer forests (mostly Picea sp.) occurred widely
across North America during the first 150 y of the
YD climate episode. This loss was accompanied by a
sudden expansion of Populus species (poplar, cotton-
wood, aspen) and sometimes Alnus (birch), which
are opportunistic pioneers that often flourish follow-
ing major forest disruptions such as wildfires. In
turn, Populus species were replaced by conifers dur-
ing the remainder of the YD. Thus, a large, perva-
sive, temporary change in continental vegetation,
as reflected in the North American pollen record, is
consistent with a major biotic perturbation that
would have resulted from widespread biomass burn-
ing at the YDB.

Biomass Burning and the Black Mat. Previous in-
vestigations have established that the YD onset is
marked by the widely distributed deposition of
black-mat layers across North America (Firestone
at al. 2007; Haynes 2008). The presence of these
organic-rich sediments is consistent with an abrupt
episode of large-scale biotic degradation that resulted
from YD climate change and a major increase in
biomass burning (Firestone at al. 2007; Haynes 2008).
Haynes (2008) surveyed 97 sites across 23 states in
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Figure 8. Bayesian synchroneity of climate change, biomass burning, and impact-related proxies at the Younger
Dryas (YD) onset. A, 13 groups, including ice cores, lake and marine cores, Pt peaks, and sites with YD boundary
(YDB) impact-related proxies. Light gray bell curves at right represent unmodeled calibrated age distributions with
calculated confidence intervals. Dark gray curves represent modeled isochronous ages for all groups of sites.
“C_Date” means that calibrated dates from OxCal or the errors-in-variables (EIV) method, shown in parentheses,
were used; n = number of sites per group. Results show that ages for all groups could be synchronous. B, Single-model
confidence intervals (CIs) for 13 groups of records. Mean age of 157 dates is 12,854 + 56 cal BP. GISP2 = Greenland
Ice Sheet Project 2; NGRIP = North Greenland Ice Core Project; GRIP = Greenland Ice Core Project.

the United States and one province in Canada and
found black mats at 72 sites (74%). He also found
closely associated remains of extinct megafauna at
73 sites (75%) and the remains of Clovis artifacts at
46 sites (47%). Moreover, Haynes (2008) noted that
no in situ megafaunal remains or Clovis artifacts
have ever been found above the base of black mat,
indicating that it represents both the extinction
boundary and the termination of the Clovis culture.
This termination is coeval with the decline in other
paleohuman populations across the Northern Hemi-
sphere (Anderson et al. 2011).

Not every YDB site exhibits a black mat, but when
one is present, biomass-burning proxies and YDB
impact proxies reach peak concentrations at the base
of or within the black mat. Approximately 40 YDB
sites on four continents contain magnetic spherules,
meltglass, and one or more biomass-burning proxies.
Of the YDB sites investigated for biomass-burning
proxies, 83% contain AC/soot, 100% contain BC/
soot, 96% contain charcoal, 79% have carbon spher-
ules, and 100% contain nanodiamonds (table 1), thus
demonstrating a strong connection between the YDB
impact event and synchronous biomass burning.
Similarly, Pt has been found at 87% of the sites in-
vestigated and precisely correlates with Pt deposition
in the Greenland ice sheet. Bayesian-calculated ages
for all sites, as shown in figure 8, indicate that the
YDB impact event, YD climate change, and wide-
spread biomass burning were synchronous.

Amplitude of Charcoal Peaks at the YD Onset.
Bayesian plots of charcoal abundances in lake se-
quences show broad-based charcoal peaks indicat-
ing biomass burning at or close to the YD onset.
These results, however, exhibit no high-amplitude,
short-duration YDB peaks, such as those as found
in the Greenland ice cores. The reasons for this are
unclear, but there are several possible explanations.
(1) Incompatible radiocarbon calibration curves and/
or insufficient chronological resolution for many
lake cores might have caused the onset of the YD to
have been inaccurately identified with incorrect
age-depth models. (2) In addition, the vertical trans-
port of charcoal in sedimentary sequences might
cause 12,835-y-old YDB sediments to appear too old
or too young, thus blurring the age record (Kennett
et al. 2015). (3) By their very nature, lakes are in ba-
sins that capture eroded, redeposited sediments across
a wide time span (Blong and Gillespie 1978). As a re-
sult, the reworking of large amounts of charcoal
might continue for decades or even centuries after
an individual local wildfire event. (4) Furthermore,
even though the YDB impact is thought to have
triggered widespread biomass burning, those fires
were not ubiquitous, and so not all lake sediments
are expected to contain an impact-related charcoal
peak. (5) In addition, sharp, brief charcoal YDB-age
peaks might be present but muted by the smoothing
algorithm used in both the EIV and regression meth-
ods. (6) Finally, the extinction of the megafauna
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Figure 9. Comparison of Younger Dryas (YD) biomass
burning with previous cooling events. A, Stair-stepped
solid line represents 80-y bins of charcoal Z-scores.
The gray dashed curve is the Bayesian plot of charcoal
Z-scores on four continents, the same as shown in fig-
ures 3D and 4A. The dashed vertical line represents 12,822 +
100 y cal BP, the age of the Greenland Ice Sheet Project 2
Pt spike. B, 80-y bins of 19 Dansgaard-Oeschger (D-O)
cooling events from Daniau et al. (2010), showing a de-

Note. Number of sites with biomass-burning proxies,
YDB impact-related proxies, megafaunal remains, and
Clovis artifacts: sites at which individual proxies have
been found, along with percentage of total sites. Source
of data for black mats, megafauna, and Clovis artifacts is
Haynes (2008). AC = aciniform carbon; BC = black
carbon.

would have led to higher fuel loads, resulting in a
sustained increase in biomass burning after the YDB
event.

The lack of YDB charcoal peaks in some lake-
core records indicates either that there were no
local fires at that time or that the charcoal has not
been preserved. This may result from many factors
that affect the preservation of biomass-burning
proxies after deposition: (1) erosion of the charcoal-
rich layer, (2) desiccation of lakes and ponds, leading
to deflation of the YDB layer, (3) dearth of local
fuel when the impact occurred, (4) variable accu-
mulation rates of sediment and charcoal, (5) biotur-
bation that mixed sediment and charcoal of different
ages, (6) oxidation and bioassimilation that destroyed

creasing trend of biomass burning up to the onset of
cooling, opposite to the increasing charcoal trend at the
YD onset. C, 80-y bins of six previous Heinrich cooling
events from Daniau et al. (2010), showing a trend of less or
similar biomass burning up to the onset of Heinrich cool-
ing, opposite to the trend of increased biomass burning
at the onset of the YD cooling episode, also considered a
Heinrich event (Andrews et al. 1995).
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charcoal and soot, and (7) very high temperatures
near the epicenter that resulted in the formation of
ash rather than charcoal and soot.

For future investigations, these limitations could
be reduced through higher-resolution sampling, by
radiocarbon dating short-lived materials (e.g., seeds),
and by using a wider range of biomass-burning prox-
ies (e.g., carbon spherules). In addition, measurement
of Pt concentrations could more precisely identify
the YD boundary.

Anomalous Wildfires Activity at YD Onset. The
question arises whether high peaks in charcoal con-
centrations were common during non-YD warm-to-
cold transitions and whether those at the YD onset
are more readily explained by nonimpact processes.
Large variations in biomass burning activity are
commonly accepted to be climate related, and, if so,
similarly high charcoal peaks should appear at other
episodes of climate change throughout the record.
Daniau et al. (2010) investigated the biomass-burning
record during 19 previous Dansgaard-Oeschger rapid-
cooling events (fig. 9C) and six cold episodes, known
as Heinrich events (fig. 9D). They found that the
typical response to warm-to-cold climate transitions
resulted in the lowest wildfire activity in the records,
not the highest, as for the YD cooling event. Notably,
even though the YD is considered a Heinrich event
(designated HO; Andrews et al. 1995), the anoma-
lously high peak in wildfire activity at the YD onset
is completely opposite to that of six previous Hein-
rich events, which showed low levels of biomass
burning (Daniau et al. 2010). Daniau et al. (2010) also
found that after reaching a low point in biomass
burning during previous non-YD cooling events,
wildfire activity remained low for approximately
a century, whereas, conversely, wildfire activity
ramped up for nearly a century after the YD onset.
This is a crucial observation: the presence of high
peaks in biomass burning at the YD onset is com-
pletely contrary to very low levels of biomass burning
observed at previous similar climatic transitions,
making the YD climate episode highly anomalous
and unexplainable by the natural processes that cre-
ated previous warm-to-cold transitions.

Percentage of YDB Biomass Burned. It has previ-
ously been established for the K-Pg impact that the
concentrations of AC/soot are directly proportional
to the percentage of biomass burned (Wolbach
1990). Thus, it is possible to estimate the burn area
of any wildfire episode, including YD-onset bio-
mass burning. We used the amount of measurable
AC/soot for seven sites to determine the weighted
average YDB AC/soot “footprint” concentration of
0.015 + 0.005 g (AC/soot)/cm? (table A12). While
AC/soot concentrations typically have an error of

+10%, samples with especially low concentrations
have a slightly higher error because there are fewer
aciniform particles to identify and quantify with
SEM. After adjustment for these errors, YDB con-
centrations range up to 0.015 + 0.005, or 0.020 g
(AC/soot)/cm?.

To calculate the percentage of global biomass
burned, we infer that biomass concentrations at the
YD onset were roughly equivalent to average con-
temporary global biomass concentrations of 0.2 g
biomass/cm? (Seiler and Crutzen 1980). Using the
average footprint from above, we can calculate the
percentage of global biomass burned:

0.015 + 0.005 g(AC/soot)/cm?
0.2 gbiomass/cm?

x 100 = 7.3% *+ 2.3%,

(1)

for a range of ~5 to ~10% biomass burned. Alter-
nately, assuming precivilization biomass concen-
trations of 0.5 g biomass/cm? (Rodin et al. 1975)
and using the average footprint above, the per-
centage biomass burned is

0.015 = 0.005 g(AC/soot)/cm?
0.5 gbiomass/cm?

x 100 = 2.9% = 0.9%,

2)

for a range of 2.0%-3.8% biomass burned. Thus,
the maximum percentage possible from the avail-
able datais 7.3% + 2.3% (eq. [1]), for a total of 9.6%
of biomass burned.

Area of Biomass Burned. Still et al. (2003) calcu-
lated the area of contemporary global biomass as
106.2 x 10° km?. This is a conservative value that is
less than the area in preindustrial times. We infer
here that this area is similar to the amount of biomass
at the YD onset, when there was presumably less
biomass because of more extensive ice cover and
larger nonvegetated areas. As shown in table Al2,
with the mean value of 7.3% global biomass burned,
the estimated global area burned is

1062 x 10°km* x (0.073 + 0.023) = (7.7 + 2.5) x 10°km?,
(3)

for a range of (5.2-10.2) x 10° km? area burned.
Percentage of Land Area Burned. Global land area

is 149 x 10°km?, and thus, if the YDB impact-related
fires are global, the percentage burned is

(7.7 = 2.5) x 10° km* burned
149 x 10°km®

x 100 = 5.2% = 1.7%,
(4)

for arange of 3.5%-6.9% area burned. The Northern
Hemisphere land area is 100 x 10° km?; thus, if the
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fires are restricted to this area, the percentage of land
burned is

(7.7 + 2.5) x 10° km® burned
100 x 10° km®

x 100 = 7.7% + 2.5%,

(5)

forarange 0of 5.2%-10.2% of land burned in Northern
Hemisphere.

The amount of global biomass burned ranges
from 5.0% to 9.6%, (eq. [1]), with a mean value of
7.3%, and this range overlaps the range of 8.5%-—
9.4% for biomass area burned at the YD onset, as
calculated from the Antarctic CO, record in part 1
(Wolbach et al. 2018). Hence, the calculated per-
centage of biomass area burned is similar for two
independent biomass-burning proxies, CO, and
AC/soot.

YDB Burn Rate versus Contemporary Burn Rate.
Roy et al. (2008) reported that the global area burned
during 2001-2002 was 3.22 x 10° km? per annum.
Using the calculated YDB burn area of (7.7 = 2.5) x
10° km? (eq. [5]), as shown in table A12, biomass
burning resulting from the YDB impact over a brief
interval of time is larger than the annual contempo-
rary fire rate by

(7.7 + 2.5) x 10° km®

322 x 100km> 24+08, (©)

forarange of 1.6-3.2 times the contemporary annual
fire rate.

Comparison of Area Burned at the YDB with that at
the K-Pg Boundary. Wolbach et al. (1990) estimated
carbon per square centimeter (not AC/soot) at 11
K-Pg sites and the percentage of AC/soot at each
(table A13). Using the same weighted-average
method, we estimate the average K-Pg AC/soot in
grams per square centimeter so that the data can be
directly compared to YDB values. The global K-Pg
weighted average footprint is 0.0044 + 0.0020 g
(AC/soot)/cm?, which is ~30% of what we observe
at the YDB, allowing us to estimate the K-Pg con-
centration as ranging from 0.0026 to 0.0054 g (AC/
soot)/cm?. If we use the same contemporary biomass
and land mass assumptions used for the YDB calcu-
lations, then the percentage of biomass burned was

0.0044 + 0.0018 g(AC/soot)/cm?
0.2 gbiomass/cm? (7)

x 100 = 2.2% = 0.9%,

for a range of 1.3%-3.1% biomass burned; the area
burned was
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(106.2 x 10°km?] x (0.022 + 0.009
(8)
= (2.3 + 0.9) x 10°km?,

for a range of (1.4-3.2) x 10° km? area burned; the
percentage of land area burned was

(2.3 + 0.9) x 10° km®burned
149 x 10°km”

x 100 = 1.6% = 0.6%,
©)

for a range of 1.0%-2.2% of land on Earth burned, or

(2.3 + 0.9) x 10° km?* burned
100 x 10°km?*

x 100 = 2.3% = 0.9%,
(10)

for a range of 1.4%-3.2% of land in Northern
Hemisphere burned; and the burn rate was

(2.3 = 0.9) x 10°km”
3.22 x 106 km?

=0.72 + 0.29, (11)

for a range of 0.43-1.01 times the annual contem-
porary fire rate within a few weeks.

The amount of biomass that burned during the
K-Pg impact is less than one-third that for the YDB.
This raises the question of how and why the fires
seem to be more pervasive at the YDB than at the
K-Pg, an impact event marked by far more massive
environmental and biotic changes. There are two
possibilities: (1) the calculations are correct, mean-
ing that the YDB experienced more widespread bio-
mass burning, or (2) carbon at the K-Pg boundary
most likely has not been preserved as well in the past
66 My as YDB carbon in the past 12,800 y. Even
though K-Pg AC/soot was blanketed by a relatively
thick layer of sediment within a short time (globally
2-3 cm in a year or less; Wolbach 1990), some por-
tion of it may have been oxygenated by erosion or
bioturbation, thus destroying some portion of the
AC/soot record.

Is there any evidence that carbon in sediments is
lost over time? Herring (1985) noted that charcoal
concentrations and fluxes increased in North Pacific
Deep Sea Drilling Project (DSDP) cores as samples
became younger, signifying increasing fire frequen-
cies over time. However, an alternate interpretation
is that the older samples had less carbon because
the carbon oxidized in situ, erroneously making older
samples appear to have lower fire frequencies. If cor-
rect, this is one explanation of why K-Pg carbon
values are lower than those for the YDB; the other
explanation is that YDB fires were more extensive.
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YDB Impact Winter. It is widely accepted that the
K-Pg soot concentrations were high enough to block
sunlight and produce an impact winter, similar to
that predicted to result from nuclear warfare (Crut-
zen et al. 1984, National Research Council 1985;
Mills et al. 2014). If so, the large quantities of AC/
soot produced at the onset of the YD almost cer-
tainly would have had the same effect.

The atmospheric absorption coefficient of smoke
ranges from 10* to 6 x 10* cm?/g (National Research
Council 1985), which can be used to calculate the
optical-depth range of the AC/soot at the YDB, from

1 x 10*cm?/g x (0.015 + 0.005)g(AC/soot)/cm?

= 150 + 50 (dimensionless),
(12)

to

6 x 10*cm?/g x (0.015 =+ 0.005)g(AC/soot)/cm?

= 600 + 200 (dimensionless).
(13)

The transmission factor is ¢ ortcal derth g that op-
tical depth = o for either case, meaning that visi-
bility was close to zero and little or no light reached
Earth’s surface while this quantity of soot was in the
atmosphere, even during daylight hours.

The contemporary burning rate produces soot
with an average atmospheric residence time of 7 d
(Horvath 1993). Higher atmospheric soot loading
would likely increase the residence time, particu-
larly if the soot entered the stratosphere, and so 7 d
should be considered the lower limit. The average
time between discovery and control for a modern
wildfire was 37 d in 2003 (Westerling et al. 2006),
but that time is shorter than that for preindustrial
fires because of modern fire suppression efforts and
therefore should be considered a lower limit. With
this low value, the residence time of sunlight-
blocking soot at the YD onset is

~37 d(avg. wildfire duration) a4
14
+ ~7d(AC/soot duration) = 44 d, or ~ 6wk.

Thus, the negative effects of AC/soot might have
persisted for 6 wk or more at the YD onset, block-
ing all sunlight and causing rapid cooling. Reduced
insolation is also expected from the injection of comet
dust to the upper atmosphere, as discussed in part 1
(Wolbach et al. 2018). If so, the lack of sunlight would
have had widespread and catastrophic biotic effects,
including insufficient light for plant photosynthesis

and growth. At the same time, North Atlantic deep-
water formation ceased, thus throttling the so-called
ocean conveyor and triggering a sustained decrease in
near-global temperatures. The changed state of oce-
anic circulation in the North Atlantic maintained YD
cold temperatures for ~1400 y, until the system reverted
to its previous state (Broecker 1997; Kennett et al. 2018).

Megafaunal Extinctions. At ornear the YD onset in
North and South America, at least 85 mammal gen-
era became extinct, including mammoths, masto-
dons, ground sloths, dire wolves, American horses,
and American camels, along with many birds and
smaller mammals (Firestone et al. 2007). Haynes
(quoted in Hall 1998, p. 6) wrote, “The sudden ex-
tinction of the Pleistocene megafauna would be dra-
matically revealed by explaining that all were gone
an instant before the black mat was deposited.”

One focus of this article is to explore whether
the megafaunal extinctions were synchronous with
the YDB impact event, increased biomass burning,
YD climate change, and human population declines.
See tables Al and A2 for previously published stud-
ies of the following three standout YDB sites.

Blackwater Draw, New Mexico, located near Clo-
vis, is the type site for Paleoindian Clovis projectile
points. At this site, a distinctive black-mat layer,
dating to the onset of YD climate changg, is in direct
contact with peaks in magnetic spherules, Pt, Ir, and
biomass-burning proxies, including charcoal, glass-
like carbon, fullerenes, and PAHs. These proxies
are draped conformably over the last known bones
of mammoths killed by Clovis hunters, who then
abandoned the site for hundreds of years. The evi-
dence from Blackwater Draw suggests that the YDB
impact event is coeval with the megafaunal extinc-
tions and a human population decline, along with
a peak in biomass burning and with YD climate
change.

Murray Springs, Arizona, contains peaks in mag-
netic spherules, meltglass, nanodiamonds, Pt, and
Irlyingimmediately beneath a distinctive black mat
that dates to the YD onset. Peaks in YDB biomass-
burning proxiesinclude charcoal, carbon spherules,
glass-like carbon, AC/soot, fullerenes, and PAHs. At
this site, several mammoths were killed by Clovis
hunters, after which the black mat formed atop the
bones and humans abandoned the site for ~1000 y.
Thus, the evidence supports the synchroneity of the
YDB impact event, increased biomass burning, YD
climate change, megafaunal extinctions, and a major
human population decline.

Sheriden Cave, Ohio, contains YDB peaks in
magnetic spherules, meltglass, nanodiamonds, Pt,
and Ir. A charcoal-rich black mat dates to the YD
onset and contains peak abundances of charcoal,
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AC/soot, carbon spherules, and nanodiamonds that
are closely associated with the last known Clovis
artifacts in the cave. The black-mat layer is in direct
contact with the wildfire-charred bones of two mega-
mammals, the flat-headed peccary (Platygonus com-
pressus) and the giant beaver (Castoroidies ohioen-
sis), that are the last known examples anywhere in
the world of those extinct species. The YDB impact
event appears coeval with increased biomass burn-
ing, YD climate change, the megafaunal extinctions,
and a human population decline.

The YD climate change and human overhunting
are the two most widely accepted explanations for
the megafaunal extinctions, but neither one by it-
self nor their combination can fully explain the
extinctions (Firestone et al. 2007). It is most likely
that the megafaunal extinctions resulted from the
direct effects of the extraterrestrial impact, com-
bined with indirect effects, including abrupt YD
climate change, insufficient food resources, dis-
ease, and flooding, all triggered or amplified by the
YD event (Firestone et al. 2007). If so, the combi-
nation of all these processes would have been more
destructive than any single cause alone.

Effect of Biomass Burning on Food Resources. Mea-
surements of AC/soot indicate that within a brief
period at the YD onset, up to ~10% of global bio-
mass burned (see eq. [1]). Such a significant loss of
potential food supplies would have had a major
negative effect, especially on large herbivores that
ingested substantial amounts of biomass and sec-
ondarily on the predators that hunted them. The
production of AC/soot from the biomass burning of
trees mostly results from the incineration of leaves,
twigs, and smaller branches, but the trunk and roots,
which account for ~80% of the mass of a tree, are
largely combustion resistant (Perry 1989). Because
trees represent ~80% of all modern terrestrial bio-
mass (Pan et al. 2013), ~64% (80% x 80%]) is mostly
incombustible, meaning that only ~36% of available
biomass is the most likely source of YDB AC/soot. If
so, the affected percentage of edible biomass burned
can be calculated as follows:

9.6% of biomass burned
36% of edible biomass

= 26.7% of edible  (15)
biomass burned.

The widespread destruction of more than one quarter
of edible terrestrial biomass, including grasslands,
scrublands, and tundra, would have increased the
mortality of large grazing and browsing animals.
AC/Soot and Extinctions. Wolbach (1990) and
Kaiho et al. (2016) proposed that the K-Pg impact
produced enough AC/soot and dust to block sun-
light and trigger major climate change that, in turn,
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degraded entire ecosystems and contributed to mass
extinctions. If so, why were the YDB extinctions
less severe than the terrestrial K-Pg extinctions
when AC/soot concentrations appear larger? Per-
haps the scale of the YDB impacts was smaller than
that for the K-Pg, or YDB soot was less concentrated
in the stratosphere and thus blocked less solar ra-
diation.

Impact Scenario and Biomass Burning. Studies of
the YDB impact, other known impact events, and
nuclear detonations allow us to update the YDB
impact hypothesis, as follows. Multiple fragments
from a large, disintegrating comet collided with
Earth ~12,800 y ago (Firestone et al. 2007; Napier
2010). Airburst fireballs and the ejection of molten
rocks would have triggered many individual wild-
fires over wide areas (Firestone et al. 2007; Napier
2010; Bunch et al. 2012; this study), producing one
of the largest concentrations of combustion aerosols
deposited in the Greenland ice sheet during the past
120,000-368,000 y (Wolbach et al. 2018). In the
higher midlatitudes, atmospheric and oceanic tem-
peratures abruptly decreased from warm intergla-
cial to near-glacial conditions within a few months
to a year (Manchester and Patterson 2008; Steffensen
et al. 2008; Kennett et al. 2018). Atmospheric and
cometary dust, along with AC/soot, triggered the
rapid onset of impact winter (Kennett et al. 2018; this
study). This blocking of sunlight led to a die-off of
vegetation (this study). Damage to the ozone layer
likely led to an increase in ultraviolet-B radiation
reaching Earth’s surface, damaging flora and fauna
(this article; Pierazzo et al. 2010; Thomas et al. 2015;
Wolbach et al. 2018). Increases in nitrogen com-
pounds, sulfates, dust, soot, and other toxic chemi-
cals from the impact and widespread wildfires likely
led to an increase in acid rain (Firestone et al. 2007).
Increased production of organic matter and burn
products from environmental degradation and bio-
mass burning contributed to algal blooms and the
subsequent formation of widespread black mats
(Firestone at al. 2007; Haynes 2008). The likely re-
duction in soil-conserving vegetation would have
led to higher water runoff, ponding, and increased
erosion (Firestone at al. 2007). At or close to the YDB
onset, many megafaunal taxa became extinct, and
some surviving species experienced population de-
clines and/or evolutionary/population bottlenecks.

Conclusions

In part 1 (Wolbach et al. 2018, this issue), we inves-
tigated biomass burning in ice-core records, and here
in part 2, we analyze and discuss multiple lake, ma-
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rine, and terrestrial records across several continents.
We find that the AC/soot and charcoal peaks re-
corded at the YD onset are consistent with the YDB
impact hypothesis. These peaks in biomass-burning
proxies are synchronous with peaks in (1) extrater-
restrial Pt deposition, (2) high-temperature, impact-
related proxies, including Fe-rich spherules, melt-
glass, and nanodiamonds, (3) ice-core combustion
aerosols, and (4) climate proxies that mark the abrupt
onset of YD climate change. This collective evidence
makes the YD onset one of the most unusual events
in the entire Quaternary, and a cosmic impact is the
only known event capable of simultaneously pro-
ducing all this evidence.
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